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Advances in semiconductors and developments in machine learning [1] have led
to versatile multimedia applications with semantic processing abilities. Real-
time applications, such as face detection, facial-expression recognition, scene
analysis [2] and object recognition [3], have become indispensable functionali-
ty for Consumer Electronic (CE) products. To deal with complicated video-pro-
cessing algorithms for multimedia content analysis, many powerful processors
have been reported [2-5]. Although these processors can speed up video-pro-
cessing tasks with massively parallel processing elements, they only focus on
the feature-extraction parts, and there is no specialized hardware to support dif-
ferent kinds of advanced machine-learning algorithms, which require extensive
computations. In this paper, a Semantic Analysis SoC (SASoC) that accelerates
video processing and machine learning simultaneously, is developed to meet the
demands of the near future.

The SASoC is characterized as follows. (1) It integrates an Image-Stream
Processing System (ISPS) supporting pixel-level feature-extraction operations
and a Feature-Stream Processing System (FSPS) supporting vector-level
machine-learning algorithms for versatile semantic-analysis applications. (2)
Hierarchical memory organization and stream network design make the 2 high-
parallelism processing units of ISPS work in a pipeline manner with high hard-
ware utilization. (3) The FSPS can support advanced machine-learning algo-
rithms with high throughput by use of a hierarchical 3-level stream vector-
processor architecture. (4) A dynamic frequency scaling technique for multiple
clock domains reduces power consumption by 65% by dynamically balancing
the loading. (5) Implementation results show that the SASoC provides high per-
formance and a high power efficiency of 671GOPS/W, which outperforms previ-
ous systems.

Figure 18.7.1 shows the SASoC architecture, which contains 3 clock domains.
The System Monitor adopts the power-aware frequency scaling technique to bal-
ance the computational time between ISPS and FSPS and reduces the power
consumption. The clock speed of ISPS and FSPS can be adjusted dynamically to
satisfy the different requirements of multimedia applications. The ISPS consists
of a complete system platform for parallel image processing, and the extracted
image features can be sent to FSPS for semantic analysis. As a Machine-
Learning Engine, the FSPS contains a 3-level Vector Processing Unit (VPU) to
handle high-dimensional feature vectors for different machine-learning algo-
rithms, such as: AdaBoost, Artificial Neural Network (ANN), Support Vector
Machine (SVM) and Gaussian Mixture Model (GMM).

Figure 18.7.2 shows the ISPS architecture, which includes a system platform
with Sequencer, Slice Memory and Reconfigurable Image Stream Processor
(RISP). The Sequencer manipulates the data transmission between the Slice
Memory and RISP. After receiving the instructions from the Sequencer, the Slice
Memory sends 128b pixel data streams to RISP for video processing. The image
data are arranged and stored in 16 banks of Slice Memory, which can continu-
ously provide 16-pixel stripes with arbitrary positions. The RISP, which can
process 16×16 window-based operations in 1 cycle, has 4 configuration modes
with the 2 processing units, Linear Processing Unit (LPU) and Order Processing
Unit (OPU). Both LPU and OPU have Local Pixel Memory to provide 102.4GB/s
bandwidth in total, and the processed images and features can be stored in the
dual Output Memory of RISP. As shown in Figure 18.7.2, with the Stream
Network, LPU and OPU can simultaneously perform in a pipeline manner in
Mode C and Mode D, where high hardware utilization can be achieved.

Figure 18.7.3 shows the FSPS architecture, which is a Machine-Learning Engine
that contains a Vector Processing Unit (VPU) and a K-Nearest Neighbor (K-NN)
Processor. The VPU has a 3-level hierarchical architecture that can process 256
dimensions of vectors in parallel, and operations such as vector inner product,
vector distance and exponential computation can be executed in 1 cycle. Each

level of VPU has a Local Vector Memory (LVM) for rapid data access and sup-
porting different operations and parallelism. The LVM of the Low-Level VPU and
Input Vector Memory (IVM) provide 76.8GB/s bandwidth to Vector ALUs, and
input vectors can be sent to different levels of the VPU according to application
requirements. Connected to High-Level VPU, the K-NN Processor is designed for
the computation of rankings of vector distances, and 128 PEs can sort and store
the distances in the same clock cycle.

Example applications based on the SASoC are illustrated in Figure 18.7.4. The
first application is concept-based image retrieval, which adopts the concept cat-
egories to perform semantic analysis in images, and the real-time retrieval
results can be used for scene recognition and photo classification in CE prod-
ucts. The color and texture features are extracted by OPU and LPU, respective-
ly, and GMM-based classification can be accomplished using 3 levels of VPU.
Finally, the K-NN Processor computes the nearest neighbor of the captured
image and gives retrieval results with the frame rate of 156fps in 160×120 res-
olution. The second application is face detection, which is widely applied in
DSCs and camcorders. After noise reduction from OPU, the Haar-like features
are extracted by LPU and sent to the FSPS for classification. The 2 levels of VPU
are used to execute the AdaBoost algorithm, and the results of face detection are
stored in Output Vector Memory (OVM) with the frame rate of 294fps in
160×120 resolution.

The performance analysis with different single-test operations of the ISPS and
FSPS is shown in Figure 18.7.5. In the ISPS, the maximum input data rate is
76.8Gpixel/s when OPU and LPU work in pipeline, and the frame rate is 17,500×
higher than the state-of-the-art PC when the frequency of the ISPS is more than
10× slower than a Pentium CPU. In the FSPS, the SVM classification operation
reaches 51.2Gdimension/s, which is 164× faster than the PC. The input data rate
of database in K-NN operation, including distance calculation, is adaptive to the
vector dimension, and the maximum speed is 0.2Gvector/s, which is 11,800×
faster than the PC.

In most applications, the computational time for video processing and machine-
learning algorithms is different, and the bubble cycles result in redundant power
consumption. The comparison of the power-aware frequency scaling technique,
which dynamically scales the frequencies of the 2 systems, is shown in Figure
18.7.6. By decreasing the frequency of the FSPS, power consumption can be
reduced by 65% without scaling the supply voltage, and the clock signal of either
the FSPS or ISPS can be gated if only one system is active.

Figure 18.7.6 also shows the summary of chip features and the comparison with
related works [2-5]. The SASoC is fabricated in 90nm CMOS and occupies
28mm2 with 3M gates and 149KB on-chip SRAM. The die micrograph is shown
in Figure 18.7.7.
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Figure 18.7.1: SASoC Architecture. Figure 18.7.2: ISPS Architecture.

Figure 18.7.3: FSPS Architecture (Machine-Learning Engine).

Figure 18.7.5: Performance analysis of the ISPS and FSPS. Figure 18.7.6: Chip features and comparisons.

Figure 18.7.4: Example applications of the SASoC.
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Figure 18.7.7: Chip micrograph.
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